Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways.
نویسندگان
چکیده
We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO3). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.
منابع مشابه
Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory
Crystallization of supersaturated liquids usually starts by epitaxial growth or by heterogeneous nucleation on foreign surfaces. Herein, we review recent advances made in modeling heteroepitaxy and heterogeneous nucleation on flat/modulated surfaces and nanoparticles within the framework of a simple dynamical density functional theory, known as the phase-field crystal model. It will be shown th...
متن کاملAn empirical technique for prediction of nucleation mechanism and interfacial tension of potassium chloride nanoparticles
Prediction of the nucleation mechanism is one of the most critical factors in the design of a crystallization system. Information about the nucleation mechanism helps to control the size, shape, size distribution, and purity of the produced crystals. When the crystallization method is used for producing nanoparticles, the nucleation mechanism should be predicted. In this study, an empirical cor...
متن کاملIce nucleation efficiency of AgI: review and new insights
AgI is one of the best investigated ice nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last sixty years provide a complex picture of silver iodide as ice nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyse ...
متن کاملSeeding approach to crystal nucleation.
We present a study of homogeneous crystal nucleation from metastable fluids via the seeding technique for four different systems: mW water, Tosi-Fumi NaCl, Lennard-Jones, and Hard Spheres. Combining simulations of spherical crystal seeds embedded in the metastable fluid with classical nucleation theory, we are able to successfully describe the nucleation rate for all systems in a wide range of ...
متن کاملEFFECTS OFVARIOUS NUCLEATION AGENTS ON CRYSTALLIZATION KINETIC OFLAS GLASS CERAMIC
The effect of Y2O3, CeO2, P2O5, ZrO2 and TiO2 in single, double and triple form on crystallization mechanism of Li2OAl2O3- SiO2(LAS) glass-ceramic system was investigated .The nucleation and crystallization peak temperatures of optimized samples in each group were determined by Ray & Day method .The crystalline phase was determined by the X-ray diffractometery .The micro-structure of the sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 145 21 شماره
صفحات -
تاریخ انتشار 2016